

CropFollow++: Robust Under-Canopy Navigation with Keypoints Arun Sivakumar¹, Mateus Gasparino¹, Michael McGuire², Vitor Higuti², Ugur Akcal¹, Girish Chowdhary¹

- applications such as high throughput phenotyping, cover crop planting.
- system called CropFollow proposed an end-to-end perception approach.
- is less interpretable.
- *CropFollow*++ to address the above limitations.

Figure shows visualization of predicted keypoints during field tests. Middle column represents the model predictions.

Center for Digital Agriculture

¹Field Robotics Engineering and Sciences Hub (FRESH), UIUC

Model Predictive Controller (MPC) steers the robot towards the reference path by controlling the linear and angular velocity of the robot.

Field validation tests

Number of ir Length of experiment [m] CropFollow++ 420 Run 1 2 420 5 Run 2 420 Run 3 2 180 Run 4 420 Run 5 3

<u>CropFollow++ 143 meters/ intervention</u> vs CropFollow 56 meters/ intervention

²Earthsense Inc

nterventions		Max distance without interventions [m]	
	CropFollow	CropFollow++	CropFollow
	2	412	310
	8	262	115
	10	366	165
	7	170	74
	6	390	260

Camera occlusion

Keypoint representation enables detection of OOD scenarios using the variance of keypoint heatmaps.

Large-scale tests on Cover Crop Robots

- 3.57km.

21.21% (7)

We acknowledge Naveen Uppalapati's help in coordinating the collaboration on under-canopy cover crop planting through I-FARM

Out-of-distribution (OOD) detection

Robot outside crop rows

-88.210W

We tested CropFollow++ on three cover crop robots for more than 25km with autonomous crash detection and recovery using back camera.

33 human interventions were needed in total.

• The longest autonomous run without intervention was

Figure shows distribution of various causes of failures that needed human intervention.